domingo, 16 de agosto de 2009

Especificaciones de Diseño ( Cañerías)

Especificaciones de Cañerías
Las especificaciones constituyen un documento legal de validez, en muchos casos contractual, en
donde se detallan los requerimientos técnicos necesarios para efectuar una etapa o conjunto de etapas en el diseño, construcción, mantenimiento etc. de una instalación industrial.
No es posible abarcar en este curso la totalidad del tipo de especificaciones posibles de redactar,
por lo que sólo veremos algunos casos más importantes de los innumerables que se pueden presentar para su aplicación en cañerías.
Especificaciones generales
Se emiten para regular todos los temas relativos a la especialidad, y contienen datos y
prescripciones válidas para todos los servicios que se tengan.
Se utilizan para contratar ingeniería, cuando se emiten antes del inicio de un proyecto, por parte
de una empresa que va a realizar una inversión destinada a una instalación industrial, y también durante el desarrollo de una ingeniería básica, de modo que pueda regular más tarde las diferentes etapas del proyecto. Contienen por lo menos las siguientes informaciones :
¨ Códigos y normas que deben ser obedecidos.
¨ Abreviaturas y siglas empleada.
¨ Sistema adoptado para identificación de líneas.
¨ Prescripciones diversas sobre le proyecto, cálculo, trazado, fabricación, montaje y pruebas de
las cañerías que se aplican en cada caso.
Los datos más importantes son los detalles básicos de distancias que se deben respetar entre las
cañerías y equipar para evitar interferencias y facilitar su operatividad, la disposición de cañerías
subterráneas, los drenajes y alcantarillado, la simbología a utilizar en diagramas, planos de planta
elevación y de detalle, soportes, isométricos etc.
Contienen además una descripción de los parámetros principales de los servicios básicos,
temperaturas, presiones etc., y los requerimientos de cada fluido en relación a los materiales a usar, en líneas generales.
Especificaciones de materiales
Son las normas específicas escritas especialmente para cada clase de servicios y para cada
proyecto o instalación.
Cada capítulo de la especificación acostumbra abarcar un número de servicios semejantes en una
cierta gama de presiones y temperaturas, para las cuales puedan ser recomendadas las mismas
especificaciones tipo y modelo de caños, válvulas y accesorios.
Para ello se hace coincidir la gama de variaciones de cada especificación con la de cada clase de
presión nominal (Rating) de válvulas, bridas y accesorios. Así por ejemplo tendremos una especificación
que incluye las variaciones de presión - temperatura para la nominal de 150# , otra para 300#.
Una misma especificación puede incluir uno o más servicios con el mismo o diferente fluido, ya
que para diferentes servicios se pueden adoptar los mismos caños, válvula y accesorios. Así tendremos una especificación para hidrocarburos líquidos, otra para hidrocarburos gaseosos, otra para vapor vivo,otra para condensado, aire comprimido, etc.
En un determinado proyecto no se tendrá un número excesivamente grande de especificaciones
diferentes, que complicaría el proyecto y dificultaría la compra y almacenaje de los materiales.
Tampoco deberá tener un número pequeño de especificaciones, pues originaría gastos innecesarios por el uso no adecuado de muchos materiales.
Es evidente que existiendo una única especificación, ésta debería cubrir al servicio más severo,
quedando así sobredimensionada para los demás.
Para la preparación de la especificación de materiales, el primer paso es confeccionar la lista de
todos los servicios existentes, con sus características completas, presiones y temperaturas de operación.
Hecha la lista, es posible agrupar los fluidos que puedan ser incluidos en una misma especificación, esto es, para los cuales se puedan recomendar los mismos materiales.
En todas las especificaciones deben constar obligatoriamente las siguientes informaciones :
¨ Sigla de identificación de la especificación
¨ Clase de fluido al cual se la destina
¨ Gama de variación de presión y temperatura
¨ Tolerancia de corrosión adoptada
¨ Caños : Material, proceso de fabricación, espesores recomendados para los distintos
diámetros, y sistema de unión adoptado.
¨ Válvulas : Tipos empleados para bloqueo (esclusa (gate va.) esférica, etc.) para regulación
(globo, aguja, diafragma), para retención, etc., con indicación completa de los materiales
usados en su construcción, carcaza, vástago, proceso de fabricación, tipo de extremidades,
clase de presión nominal, accionamiento etc.
¨ Bridas (flanges) y accesorios brindados; especificación del material, clase de presión nominal y tipo de caras.
¨ Accesorios para soldar y roscados : Material, proceso de fabricación, clase de presión nominal, espesor.
¨ Pernos (bolts-stud bolts) : tipo y especificación del material.
¨ Juntas; tipo, espesor, material.
Debe tenerse en cuenta que los materiales, clase de presión, espesores, etc. tanto de los caños
como de las válvulas y accesorios, casi nunca son los mismos para todos los diámetros nominales de una misma especificación.
Las especificaciones deben tener en cuenta, si así lo requiere el caso, exigencias especiales de
los procedimientos de soldadura y electrodos usados, tratamientos térmicos, revestimientos externos e internos, caso de empleo de codos en secciones (mittered bends) o de derivaciones soldadas los cuales deben constar en cada especificación.
Para el caso particular de las válvulas, es costumbre usar siglas que son adoptadas en diferentes
hojas de esp. ya que se pueden aplicar a diferentes servicios.
Agrupadas las válvulas con sus siglas de identificación aparte, constituyen en si mismas otra
especificación que facilita la compra y almacenaje de las válvulas.
Tanto las especificaciones generales como las de clase de materiales son usadas en la
contratación de montajes de plantas industriales, en fabricación de cañerías y en las plantas ya en marcha, para las tareas de mantenimiento o ampliaciones, como guía de diseño.
Son complementadas además con las siguientes especificaciones particulares de cada grupo de
servicios
¨ Soldadura
¨ Aislación térmica
¨ Pintura y tratamiento de superficies
¨ Filtros (materiales e instalación)
¨ Sistemas de calentamiento (tracing)
¨ Cálculos de diámetro, espesores, flexibilidad.
En caso de especificaciones para mantenimiento, se incluyen los siguientes capítulos que
configuran en sí mismos un contrato de carácter técnico-legal : Listas de Líneas
Como complemento de los planos de cañerías, se emiten planillas con las características de cada
línea, que si bien no forman parte de los mismos proveen todos los datos necesarios para identificarlas.
Estas hojas de datos o listas de líneas contienen las siguientes columnas :
a) Número de línea
b) Clase o tipo de fluido circulante
c) Diámetro nominal
d) Sigla abreviada de la especificación de materiales
e) Extremos de la línea, es decir desde donde viene y hacia donde va
f) Caudal, velocidad y pérdida de carga
g) Temperatura y presión de operación
h) Temperatura y presión de diseño
i) Presión de prueba
j) Aislación térmica si fuera requerido y tipo
k) Necesidad de calentamiento (tracing) y tipo.
Estos capítulos son un ejemplo que puede ampliarse o reducirse según sean
los requerimientos de cada proyecto. El contratista los tomará en cuenta en
su oferta técnica y si cumplen con la esp. general de materiales, de montaje etc.
vigentes en la planta, ésta podrá ser técnicamente aceptable.
1. Alcance
2. Materiales y normas
3. Fabricación
4. Soldadura
5. Transporte
6. Almacenamiento
7. Montaje
8. Inspección
9. Puesta en marcha
10. Plazos de entrega

Listas de Materiales

Se incluyen algunas veces en los mismos planos o en documento aparte y en este último caso
pueden incluir los materiales de varios planos.
Es recomendable que contengan todas las características de los materiales, incluyendo :
a) Número de ítem
b) Diámetro nominal
c) Tipo de accesorio
d) Características (roscado, soldable etc.)
e) Rating (Relación nominal presión- temperatura)
f) Cantidad
g) Material
Donde generalmente se incluyen, es en los planos en los de fabricación e isométricos para
mantenimiento.
También en los planos de planta - elevación y en los isométricos de diseño se incluyen las listas de materiales.
En los sistemas gráficos (CAD) se utilizan bases de datos como documento separado del archivo
gráfico o también incorporado al plano como texto.
Los Sistemas Gráficos relacionan cada elemento o entidad componente de las líneas en el plano
con cada línea de la base (record) y el manipuleo se puede realizar dentro del archivo del software utilizado, del mismo modo que se procede como con cualquier otra base de datos.
Diseño de Planos de Cañerías Consideraciones básicas
1) Condiciones de servicio: Raramente las condiciones de servicio imponen en forma obligatoria
el trazado de una cañería. Aún así es importante conocerlas, para lograr un mínimo de pérdida de carga,
pendientes apropiadas, etc.
2) Flexibilidad: Las líneas deben tener un trazado tal que les dé flexibilidad suficiente para
absorber los esfuerzos provenientes de las dilataciones (será visto en Tema 6).
3) Transmisión de esfuerzos y vibraciones: no debe haber transmisión de esfuerzos no
admisibles, de las cañerías a los equipos y viceversa.
4) Accesibilidad: las válvulas o equipos que exijan operación o mantenimiento deben ser
accesibles con facilidad. Las líneas deben ser accesibles por lo menos para inspección.
5) Mantenimiento: deben ser provistas de facilidades para mantenimiento, incluso pintura, de toda
la cañería y accesorios. El desmontaje rara vez ocurre y no es considerado.
6) Seguridad: Deben prevenirse accidentes y minimizar sus consecuencias, si se producen.
7) Economía: El mejor trazado es el más barato, siempre que se respeten las demás exigencias.
8) Apariencia: Una buena apariencia, es decir, un aspecto de orden y de buena terminación es
siempre necesaria, sumada a la facilidad de operación, mantenimiento y economía.

lunes, 1 de octubre de 2007




PIPING ( DEFINICION )

Llámese cañería a un conjunto de caños, conductos cerrados destinados al transporte de fluidos, y sus accesorios. La gran mayoría de las cañerías actúa como conductos a presión es decir, sin superficie libre, con el fluido mojando toda su área transversal, a excepción de los desagües o alcantarillado donde el fluido trabaja con superficie libre, como canales.
La necesidad del uso de cañerías surge del hecho de que el punto de almacenamiento o
generación de los fluidos se encuentra generalmente distante de los puntos de utilización.
Se usan para el transporte de todos los fluidos conocidos líquidos o gaseosos, para materiales
pastosos o pulpa y para los fluidos en suspensión, en toda la gama de presiones que se usan en la
industria, desde el vacío absoluto hasta presiones de hasta 4000 kg/cm2(400MPa) y desde cero
absoluto hasta las temperaturas de fusión de los metales.
Su empleo se remonta a la antigüedad, pero su aplicación industrial y fabricación comercial
recién se desarrolla a fines del siglo XIX por la necesidad de que los materiales resistieran las
crecientes presiones motivadas por la utilización del vapor.
La importancia de las cañerías es muy grande y son, de los equipos industriales, los más
usados. El costo puede llegar al 50% o 70% de los equipos de una planta de proceso y el 15% a 20% del total de la instalación. En complejos mineros estas cifras se reducen por la incidencia de costo de las instalaciones del tratamiento del mineral, pero representa un 6% a 8% de las HH de ingeniería y del 10% al 12% del costo total.
Estas son obviamente dependientes de la naturaleza de la instalación industrial, ya que en
caso de una Refinería electrolítica de cobre, éstas cifras son superadas ampliamente.

MATERIALES

Se emplean en la actualidad gran variedad de materiales para la fabricación de cañerías. Las
normas ASTM, por ejemplo, especifica más de 150 diferentes tipos. Podemos resumirlos en el
siguiente cuadro :


Acero al Carbono (Carbon Steel)
Acero de baja aleación(Low alloy steel)
Acero inoxidable (Stainless steel)
Hierro fundido (Cast Steel)
Hierro forjado (Wrough Iron)
Ferrosos
Cobre
Latón (Brass)
Bronce
Monel
Cupro-niquel
Niquel
Plomo
Aluminio
Titanio, Zirconio etc.
No Ferrosos
Caños Metálicos

METODOS DE FABRICACION DE CAÑERIAS

Existen seis procesos de fabricación de caños.

Los procesos de laminación y de fabricación por soldadura son los más importantes y
constituyen los 2/3 de todos los caños utilizados por la industria.

Fundición

En este proceso, el material en estado líquido se moldea tomando su forma final.
Se fabrican mediante este proceso los caños de hierro fundido, algunos aceros especiales no
forjables y la mayoría de los no metálicos como vidrio, porcelana, barro vidriado, hormigón, cemento -amianto, cauchos, etc
Para caños de hierro fundido y de hormigón de buena calidad se usa el procedimiento de centrifugado .en el que el material líquido es colado en un molde rotativo que da como resultado una composición más homogénea de las paredes.
Para caños de hormigón se procede a controlar estrictamente la granulometría de los ácidos y la
relación agua - cemento procediendo a vibrar los moldes en el hormigonado y desmoldando de inmediato

Forja

Es el menos usado. Sólo se utiliza para caños de paredes gruesas, para muy altas presiones.
El lingote de acero es previamente perforado en el centro con una broca, en frío. Luego la pieza es calentada en un horno y las paredes son forjadas con un martinete contra una mandril central. El lingote sufre durante la forja un notable aumento de longitud.

Extrusión

En la fabricación por extrusión, una pieza cilíndrica de acero en estado pastoso es colocado en
un recipiente de acero debajo de una poderosa prensa. En una única operación, que dura pocos
segundos se produce :
1) El émbolo de la prensa, cuyo diámetro es el mismo que el de la pieza, se apoya sobre la
misma.
2) El mandril accionado por la prensa agujerea completamente el centro de la pieza.
3) De inmediato, el émbolo de la prensa empuja la pieza obligando al material a pasar por
una matriz calibrada con el diámetro exterior de caño.
Para caños de acero, la temperatura de calentamiento de la pieza es de 1200 grados C. Las
prensas son verticales y pueden alcanzar un esfuerzo de 1500t. Los caños salen de la operación con paredes gruesas. De allí son llevados aún calientes, a un laminador de cilindros o rolos para reducir su diámetro. Finalmente van a otros laminadores para lograr un diámetro final normalizado y reducción mayor del espesor. Con este proceso se fabrican caños de diámetro nominal de hasta 3" en acero y también de aluminio, cobre, latón, bronce, plomo y materiales plásticos.

Laminación

Los procesos de laminación son los más importantes para la fabricación de caños sin costura. Se
emplean para caños de acero al carbono, de baja aleación e inoxidables Uno de los más difundidos, el proceso "Mannesmann" es el siguiente :
1. Un lingote de acero con diámetro aproximado del caño que se quiere fabricar, se calienta a
una temperatura de aproximadamente 1200 grados C y llevado al denominado " laminador
oblicuo".
2. El laminador oblicuo está formado por rolos de doble cono, con ángulos muy pequeños. El
lingote es colocado entre dos rolos que giran, lo prensan y a la vez le imprimen un
movimiento de rotación y otro de traslación.
3. A consecuencia del movimiento de traslación el lingote es presionado contra un mandril
cónico que se encuentra entre los rolos. El mandril abre un agujero en el centro del lingote,
transformándolo en un caño y alisando continuamente la superficie interior del mismo. El
mandril está fijo y su longitud es mayor que la del caño a formar
4. El caño formado en la primera operación tiene aún paredes muy gruesas. Es llevado
entonces a un segundo laminador oblicuo, luego de haber sido retirado el mandril y
estando aún caliente, que adelgaza las paredes ajustando el diámetro externo y
aumentando su longitud.
5. Al pasar por los laminadores oblicuos el caño se curva. Se le hace pasar de inmediato por
un tren enderezador consistente en rodillos con la curva del diámetro exterior del caño,
dispuestos para ejercer fuerzas laterales que finalmente dejan el caño recto.
6. Finalmente el caño sufre una serie de calibraciones y alisado de las superficies interna y
externa. Este proceso se usa en caños de 3" a 12" y en Estados Unidos hasta 24".

Caños con Costura

Todos los caños con costura son fabricados a partir de flejes de acero laminado (bobinas).
El tipo de unión es el de soldadura
FWP (Furnace Welded Pipe)
1) Un fleje continuo es empujado por cilindros que giran, introduciéndolo en un horno que
lo lleva a una temperatura de aproximadamente 1200 grados Celsius (en la salida del
horno).
2) Un grupo de cilindros colocado a la salida del horno deforman el fleje hasta cerrar un
cilindro presionando fuertemente los bordes que a esa temperatura se sueldan
3) Luego el caño es cortado por una sierra cada 6, 9 ó 12m según sea la longitud
requerida.
4) Los caños pasan por una calibradora y por un chorro continuo de agua que al mismo
tiempo de enfriarlo le quita el laminillo o escamas que se forman en el proceso de
enfriamiento.
5) Más tarde se los transporta a través de mesas de transferencia donde son sometidos a
una lluvia continua de agua y una vez enfriado se los pasa por juegos de cilindros
enderezadores. Finalmente se los frentea con tornos y cuando es requerido se procede
a roscar los extremos.
6) Este proceso se usa para caños de hasta 3" de diámetro nominal.
ERW (Electric Resistance Welding)
1) En este caso la operación de formación del caño se realiza en frío, haciendo pasar el
fleje continuo por rolos que gradualmente lo doblan hasta su forma cilíndrica.
2) Luego de formado el caño se cierra por soldadura continua ejecutada por máquina (arco
sumergido en gas inerte).
3) El proceso se termina pasando el caño por enderezadores y si así fuere requerido por
un tratamiento térmico en horno, para alivio de tensiones producidas en el área de la
soldadura. Luego son frenteados y si es requerido, roscados.
4) En el caso antes descrito la soldadura es longitudinal y se utiliza para caños de hasta 4"
de diámetro nominal.
Para diámetros mayores (hasta 24") es común utilizar soldadura helicoidal con arco
sumergido. Según sea el espesor del material pueden ser requeridas dos o más pasadas externas yuna interna.
Estos caños son de mejor calidad que los de soldadura por presión (en caliente).
La ventaja del caño formado a partir del fleje es que su espesor es uniforme, ya que se logra a
partir de un tren de laminación, y el acomodamiento de la microestructura es conveniente
desde el punto de vista tensional.
En cambio, la soldadura deberá ser inspeccionada por rayos X u otros procedimientos para que elmismo no incida sobre el espesor calculado.